翻訳と辞書 |
Finite pointset method : ウィキペディア英語版 | Finite pointset method In applied mathematics, the name finite pointset method is a general approach for the numerical solution of problems in continuum mechanics, such as the simulation of fluid flows. In this approach (often abbreviated as FPM) the medium is represented by a finite set of points, each endowed with the relevant local properties of the medium such as density, velocity, pressure, and temperature. 〔 The sampling points can move with the medium, as in the Lagrangian approach to fluid dynamics or they may be fixed in space while the medium flows through them, as in the Eulerian approach. A mixed Lagrangian-Eulerian approach may also be used. The Lagrangian approach is also known (especially in the computer graphics field) as particle method. Finite pointset methods are meshfree methods and therefore are easily adapted to domains with complex and/or time-evolving geometries and moving phase boundaries (such as a liquid splashing into a container, or the blowing of a glass bottle) without the software complexity that would be required to handle those features with topological data structures. They can be useful in non-linear problems involving viscous fluids, heat and mass transfer, linear and non-linear elastic or plastic deformations, etc. ==Description== In the simplest implementations, the finite point set is stored as an unstructured list of points in the medium. In the Lagrangian approach the points move with the medium, and points may be added or deleted in order to maintain a prescribed sampling density. The point density is usually prescribed by a ''smoothing length'' defined locally. In the Eulerian approach the points are fixed in space, but new points may be added where there is need for increased accuracy. So, in both approaches the nearest neighbors of a point are not fixed, and are determined again at each time step.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Finite pointset method」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|